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Abstract. In the southwestern USA, increases in size, frequency, and severity of wildfire are driving the
conversion of forests to shrub-dominated ecosystems. Increases in drought extent and severity, coupled
with the way that shrub-dominated systems are perpetuated by high-severity fire, predisposes these post-
disturbance landscapes to remain in a non-forest condition. Consequently, understanding the distribution
of aboveground biomass in post-disturbance, shrub-dominated ecosystems is central to constraining the
uncertainty surrounding how these ecosystems interact with light and water to sequester carbon. Here we
present allometric regressions for Quercus gambelii (Gambel oak) and Robinia neomexicana (New Mexico
locust), two species that dominate post-fire landscapes in the southwestern USA. Our allometric regres-
sions are designed to be driven by either field plot or high-resolution remote sensing data, using either
shrub area or shrub volume to estimate biomass.
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INTRODUCTION

Anthropogenic climatic change is increasing
the rate and extent of uncharacteristic wildfire
across the semi-arid southwestern USA
(Dennison et al. 2014, Singleton et al. 2019). A
legacy of fire exclusion has altered the structure
of frequent-fire adapted forests characteristic of
the region, increasing the likelihood of high-
severity wildfire (Allen et al. 2002, Singleton
et al. 2019). As more of the forested landscape
experiences stand-replacing wildfires, landscape
conversion from forest to shrub-dominated
ecosystems is becoming more common (Parks
et al. 2014, Coppoletta et al. 2016). Many shrub
species re-sprout following fire, and following
high-severity wildfire, shrubs can become the
most abundant, if only woody vegetation, inside
the perimeter of high-severity patches (Savage
and Mast 2005, Coop et al. 2016, Guiterman

et al. 2018), resulting in large and lasting changes
to ecosystem structure and function.
The wildfire-catalyzed reallocation of carbon

across the landscape from a vertically stratified
coniferous forest canopy to short stature vegeta-
tion has significant and lasting implications for
how vegetation across the landscape interacts
with energy and water to sequester carbon
(Amiro et al. 1999, Law et al. 2001, Bowman
et al. 2009). Ecosystem light use is substantially
reduced following these disturbances due to a
combination of the large decrease in leaf area
index (LAI) and transition to seasonal oscillation
of LAI associated with deciduous plant phenol-
ogy (Montes-Helu et al. 2009). Paired with the
shorter growing season of deciduous vegetation
compared to evergreen canopies, shifts in sensi-
ble heat fluxes trend toward a warmer landscape,
due in part to lower per leaf area transpiration
rates characteristic of shrub canopies (Fang et al.
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2017). Together, these changes in how the vegeta-
tion interacts with light and water decrease both
ecosystem productivity and the total stocks of
above- and belowground carbon storage. Char-
acterizing the distribution of carbon across
post-disturbance landscapes is critical to under-
standing how a change in allocation of carbon
will ultimately affect water ecosystem and
energy balance (Gibbs et al. 2007).

As the abundance and extent of these post-dis-
turbance ecosystems increases, so will the spatial
challenges associated with characterizing carbon
stocks. Conventional approaches to characterizing
vegetation carbon stocks spatially make use of allo-
metric relationships between size and shape of tree
and shrub species to model the total biomass and
carbon content of vegetation in both wood and
foliar components (Jenkins et al. 2004, Chojnacky
et al. 2013). Plot-based measurements of the stem,
root collar, or diameter of the trunk at breast height
are then leveraged to scale across larger extents,
often with the use of remote sensing imagery from
aerial or satellite data. Yet, the majority of the
remote sensing data sets used to facilitate the scal-
ing effort do not provide the same measurements
as those that were used to generate the allometry
and subsequently can produce mixed results (Lu
2006, Powell et al. 2010). For example, fractional
cover or crown dimensions are used with moder-
ate-to-high spatial resolution data, yet root collar
diameter and height may have been used to
develop the allometry (Krofcheck et al. 2016).

The increasing accessibility of high-resolution
aerial and satellite remote sensing imagery, how-
ever, permits the scaling of allometric relation-
ships that are built from direct crown area
measurements across large extents (Asner et al.
2003, Gonzalez et al. 2010, Colgan et al. 2013).
Including three-dimensional structural data (e.g.,
height and volume) in the allometric scaling
effort further increases the capability to predict
carbon stocks in short stature ecosystems, and
can help mitigate some of the problems associ-
ated with using two-dimensional imagery to
delineate individual shrubs in dense systems
(Krofcheck et al. 2016). Developing relationships
that relate shrub area and volume to biomass
permits the application of remote sensing prod-
ucts to quantify the distribution of shrub biomass
across spatial scales relevant to informing post-
disturbance decision-making.

Here we present allometric scaling relation-
ships for two of the most abundant shrub species
in southwestern U.S. post-fire landscapes: Quer-
cus gambellii (oak) and Robinia neomexicana
(locust). Specifically, we sought to derive species-
specific and grouped relationships to predict
total biomass from shrub dimensions retrievable
by both ground sampling and remote sensing
applications. Further, we demonstrate the appli-
cation of these allometric scaling relationships in
a post-fire landscape using high-resolution
remote sensing data collected via a small
unmanned aerial system (sUAS).

MATERIALS AND METHODS

Site description
We harvested shrubs in two 4 ha research sites

in northern New Mexico, one in unburned pon-
derosa pine (Pinus ponderosa) forest and one
within the perimeter of a high-severity fire patch
that was ponderosa pine dominated prior to the
fire, to develop our allometric equations. These
research sites were selected because they repre-
sent the typical pre- and post- high-severity wild-
fire vegetation assemblages for semi-arid
ponderosa pine forest in the southwestern USA.
The unburned site is located in a ponderosa pine
forest in the Valles Caldera National Preserve,
and has been selected because it is shown to be a
broad representative of southwestern ponderosa
pine forest across the region (see Anderson-
Teixeira et al. 2011, for a full site description).
Our second site is located roughly 16 km SE, in
the footprint of the Las Conchas fire that burned
in 2011 on the east flank of the Jemez Mountains
in northern New Mexico. The fire burned
approximately 63,130 ha, 20% of which burned
at high severity, and burned over five prior wild-
fire footprints. In forested areas that had not been
impacted by prior wildfire, the Las Conchas
burned at high severity. In areas where the Las
Conchas fire burned over previous fires that had
shifted the vegetation from forest to non-forest,
the Las Conchas fire reinforced the vegetation
change (Coop et al. 2016).
We sampled the unburned site at four loca-

tions within the 4 ha research area, each at
2500 m elevation, where the mean annual precip-
itation (MAP) is 550 mm and the mean annual
temperature (MAT) is 9.8°C. We sampled the
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post-fire site at six locations along an elevation
gradient ranging from 2400 to 2750 m, with a
MAP of 482.14 mm and MAT of 8.34°C (DAY-
MET, Thornton et al. 2012). Soil type at the
unburned site is a mixture of Cosey-Jarmillo
association and Redondo, whereas the soil type
at the post-fire sites is predominately a mixture
of Lacueva and Bearsprings peak families (USDA
Soil Data Explorer, https://websoilsurvey.sc.egov.
usda.gov).

The understory of the unburned site is co-
dominated by oak and herbaceous species.
Locust was not captured in the sampling plots.
The burned sites are co-dominated by oak and
locust, with no conifer canopy cover and very
few surviving trees. We selected Gambel oak and
New Mexico locust because they co-occur with
ponderosa pine and are common in patches
burned by high-severity fire because they
re-sprout following fire (Wagner et al. 1992,
Muldavin et al. 2011, Kaufmann et al. 2016).

Sampling description and specific leaf area
calculation

All destructive harvesting took place between
June and August in 2017 and 2018, resulting in
the harvest of 17 locust and 11 oak from the
burned sites and 44 oak from the unburned site.
We selected individual shrubs for harvest in an
effort to capture the range and variability in
height and area of individuals growing in both
isolation and within clumps. We measured the
height and two orthogonal crown diameters for
each shrub, then cut the individual at the base,
and placed each into large paper bags at the field
site. We then dried the cut vegetation at 65°C for
3–7 d, or until the vegetation was fully dried as
determined by successive weighing. We did not
include any belowground material in our sam-
pling. For a subset of six individuals of each spe-
cies, we collected branches of average length and
leaf number for each individual and separated
the leaf material from the woody material. The
leaf area of these samples was measured on a
flatbed scanner before the foliar and woody
materials were dried and the rest of the samples
were also weighed following the same procedure
(Fig. 1). The leaf scans were then aggregated and
processed using ImageJ to calculate the specific
leaf area (SLA) and total leaf area per unit dry
weight (Schneider et al. 2012).

Allometry generation and error propagation
We used linear regression to predict shrub bio-

mass using either shrub area or shrub volume for
individual species and both species combined.
We calculated the volume of an ellipsoid from
the measured crown dimensions and used one-
half of the ellipsoid to estimate shrub volume.
We estimated shrub area by using the two
orthogonal crown diameters to calculate the area
of an ellipse. We used root mean-squared error,
adjusted R2, and leave-one-out cross-validation
to assess model fit. We tested for significance
between sample populations using univariate t
tests. We incorporated the salient sources of
model error in our regressions, including the
measurement uncertainty made in the field
(�5 cm per measurement) and biomass measure-
ments made in the lab (�0.01 g per bag). We
propagated that uncertainty through to each
observation using a Monte-Carlo approach to

Fig. 1. Leaf scan composite of leaf samples from
Quercus gambelii (left) and Robinia neomexicana (right)
exhibiting morphology typical for the species in north-
ern New Mexico.
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bootstrapping the linear regression. We ran 1000
iterations of the curve fitting process wherein for
each iteration and input variables, we multiplied
a random draw from a normal distribution
(mu = 0, sigma = 0.5) with the correspond-
ing propagated uncertainty (Asner et al. 2003,
Gonzalez et al. 2010, Krofcheck et al. 2016).
Assessments of significant statistical relation-
ships were determined by a P-value <0.05. All
statistical tests, model fitting, and figure genera-
tion were performed in Python 3.6 (Python Soft-
ware Foundation, Wilmington, Delaware, USA).

Small footprint biomass determination using a
small unmanned aerial system

We used a sUAS hexacopter to collect imagery
in a 6.7-ha site located in the Las Conchas fire
perimeter. Images were collected in July 2018 using
a custom-built hexacopter carrying a Sony a6000
camera (Sony Corporation, Tokyo, Japan) with a
19 mm prime lens, capturing imagery in the RAW
format. We integrated the camera with an EMLID
Reach global navigation satellite system (GNSS)
receiver on the sUAS such that the camera shutter
activation would be recorded as an event by the
EMLID Reach (www.emlid.com). A second
EMLID Reach GNSS receiver was positioned as a
base station running concurrently during the sUAS
operation. We conducted flight planning in Mis-
sion Planner (v1.3), with all flights occurring within
visual line of sight and at 80 m above ground level,
resulting in a ground sample distance of 1.4 cm
per pixel. We designated a front and side image
overlap of 85% and 80%, respectively, with a total
of 80 images collected. The precise location of each
image photo-center was determined using a post-
processed kinematic workflow in RTKLib (v2.4.3,
http://www.rtklib.com/). The RAW format images
were converted to 16-bit linear TIFF files in Python
3.6, and imported into Agisoft Metashape for struc-
ture from motion (SfM) processing. We followed a
procedure similar to Cunliffe et al. (2016) to con-
vert the imagery to a raster of canopy heights and
an orthomosaic. We conducted inverse watershed
segmentation on the canopy height model to
extract the shrub crowns as individual objects. We
only included objects >0.3 and <5 m in height for
this example analysis. Finally, we vectorized the
resulting objects into an ESRI shapefile and calcu-
lated the area and volume of each canopy object,
storing them as attributes of the shapefile. This

workflow allowed us to apply area- or volume-
based allometric relationships to each canopy
object in our analysis extent along with the error
propagation results, similar to Krofcheck et al.
(2016).

RESULTS

The distributions of crown area and crown vol-
ume for the individuals we harvested are shown
in Fig. 2. The majority of oaks sampled at the
unburned site had smaller areas and volumes
because they were growing under an intact pon-
derosa pine canopy. The lack of tree canopy at
the burned site and its influence on light and
water availability resulted in a wider distribution
of oak sizes, with volumes ranging from 1.3 e�4

to 0.33 m3 at the unburned site and 0.10 to
11.57 m3 at the burned site.
Log normalization of area and volume as linear

model predictors of dry biomass improved
adjusted R2 values over the untransformed rela-
tionship and explained 91–97% of the variability
in the natural log of dry biomass (Fig. 3, Table 1).
Given the improved adjusted R2 and decreased
root mean square error (RMSE) of the log-normal-
ized fits, we propagated the uncertainty in the
dimensional and biomass measurements accord-
ingly and bootstrapped the regressions to develop
a mean and variance of the fit statistics (Table 1).
The oak leaves were gently lobed with median

line symmetry and were slightly smaller than the
pinnately compound leaves of the locust (Fig. 1).
The SLA of oak (0.01 � 9.7 e�4) was significantly
higher than that of the locust (0.009 � 8.5 e�4,
P < 0.05; Fig. 4).
When we applied the resulting combined spe-

cies and volume-based allometry to our demo
sUAS analysis extent, we calculated 0.75 �
0.05 Mg of biomass/ha (Fig. 5).

DISCUSSION

The semi-arid forests of the southwestern USA
have historically been shaped and maintained by
wildfire, yet fire exclusion and climatic change
are altering the way wildfire interacts with for-
ests across the region. As high-severity, stand-
replacing wildfire increases in the southwestern
USA, post-fire communities dominated by
shrubs are becoming increasingly common. Since

 ❖ www.esajournals.org 4 October 2019 ❖ Volume 10(10) ❖ Article e02905

KROFCHECK ET AL.

http://www.emlid.com
http://www.rtklib.com/


both of these shrub species re-sprout following
fire, the near-term post-fire structural transfor-
mation from forest to a low-statured shrub
canopy and standing dead trees increases the
likelihood that these severely burned patches
experience another high-severity fire if they
re-burn (Coppoletta et al. 2016, Walker et al.
2018). Further, long distances to mature surviv-
ing pines paired with changes to the light and
soil moisture environment following severe wild-
fire can be an impediment to conifer regeneration
(Chambers et al. 2016).

The combination of increased likelihood of
subsequent high-severity fire and decreased con-
ifer regeneration in these systems has the poten-
tial to convert landscapes that were once forests
to a significantly less productive state dominated
by shrubs (Coop et al. 2016, Guiterman et al.
2018). The cascading implications for the fate of

carbon, water, and energy balance at regional
scales from vegetation type change make it criti-
cal that we develop the means to characterize
both how these post-disturbance landscapes are
structured and what the implications of that
structure are in terms of ecosystem function both
spatially and temporally.
Our allometric relationships can be used to

estimate the biomass of individual shrub cano-
pies in unburned and post-fire landscapes in the
southwestern USAwhere oak and locust cover is
not contiguous. Further, because we include both
area and volume equations and their associated
uncertainties, shrub biomass can be spatially
scaled following conventional plot- and area-
based approaches paired with estimates of per-
cent cover across larger areas.
However, we developed these allometries

with the intent to aid characterizing shrub

Fig. 2. Distributions for Quercus gambelii (QUGA) and Robinia neomexicana (RONE) area (top) and volume (bot-
tom) measurements that informed the individual and combined allometries. The x-axis tick marks denote the
area and volume of samples within each bin.
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biomass across spatial extents relevant to the
scale of high-severity wildfire patch size by
making use of high-resolution remote sensing
data and small unmanned aerial system
(sUAS) surveys.

Remote sensing techniques capable of resolv-
ing individuals or clumps of shrubs, such as
high-resolution satellite imagery (e.g., Worldview
sensors), aerial surveys (e.g., NAIP), or sUAS
acquisitions, can be paired with these allometric

Fig. 3. Linear regression relating log-normalized field measured crown area (top) and volume (bottom) to log-
normalized dried biomass for Quercus gambelii (QUGA), Robinia neomexicana (RONE), and both species com-
bined. Fit statistics are reported in Table 1.

Table 1. Regression fit statistics for the area (top)- and volume (bottom)-based shrub allometries for the model
form y = m�x + b, where y is the natural log of biomass and x is either the natural log of shrub area or volume.

Variable m b RMSE (kg) Adjusted R2 mr br

Crown area allometry
Oak 1.119 �0.679 2.01 0.874 0.064 0.087
Locust 1.331 �1.115 1.6 0.933 0.022 0.019
Combined 1.091 �0.813 1.95 0.888 0.048 0.042

Crown volume Allometry
Oak 0.898 �0.5 1.77 0.915 0.037 0.068
Locust 1.054 �1.026 1.23 0.97 0.008 0.009
Combined 0.866 �0.683 1.76 0.919 0.026 0.032

Note: Mean values are reported for the species-specific and combined regression statistics for both slope (m) and intercept
(b), as well as the standard deviations resulting from 1000 replicate fits incorporating measurement uncertainty.
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relationships to estimate the biomass across the
landscape. In our example, we used sUAS ima-
gery and SfM to construct three-dimensional

models of the post-fire shrub canopy and esti-
mated shrub biomass using the combined species
volume–biomass relationship (Fig. 5). Here, the
6.7 ha analysis region contained 5.0 � 0.23 Mg
of shrub biomass (0.75 � 0.05 Mg biomass/ha).
This is a substantial reduction in biomass com-
pared to our unburned site (141.3 Mg C �
44.3 Mg biomass/ha; Remy et al. 2019).
The spatially continuous characterization of

total vegetation biomass in a post-disturbance
landscape is a powerful state variable that is
required to understand ecophysiological pro-
cesses and can be useful for informing post-fire
management. Changes in biomass allocation
over time, or aboveground productivity, are ini-
tially governed by, and ultimately affect, patterns
of water and energy flux across the landscape.
Consequently, the ability to characterize the spa-
tial and temporal patterns in biomass change is
central to understanding the development of

Fig. 4. Distribution of the specific leaf area of both
oak (Quercus gambelii) and locust (Robinia neomexicana),
N = 6 for both species.

Fig. 5. Mapped shrub biomass across a field site in the Las Conchas fire footprint in the Jemez Mountains,
New Mexico. Here the biomass estimates were calculated using the volume-driven combined species allometry,
where only objects >0.3 and <5 m were considered in the analysis.
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these ecosystems and the ecology they support.
Changes in biomass allocation over time and
across space also influence the way that a subse-
quent fire will interact with the landscape (Coop
et al. 2016, Coppoletta et al. 2016). This approach
can be used to quantify the post-fire ecosystem
structure and inform fire spread modeling. Given
the lack of information regarding the succes-
sional fate of these post-fire systems under
changing climatic conditions and disturbance
regimes, basic information regarding state vari-
ables like vegetation biomass will help to con-
strain uncertainty and improve estimates of
landscape processes under contemporary and
projected climates.
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